PARTE A: Problemas del 1 al 10.

El puntaje por respuesta correcta es de +3 puntos, respuesta incorrecta -0.5 puntos y pregunta en blanco 0 puntos.

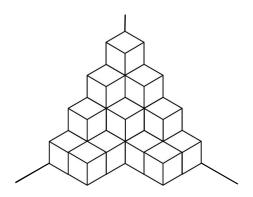
Problema 1. Calcula el valor de la expresión $\frac{2019^2 - 1}{2018}$.

- (A) 1
- (B) 2018
- (C) 2019
- (D) 2020
- (E) 108

Problema 2. ¿Cuál es el mayor factor primo de $55^{54} + 55^{55} + 55^{56}$?

- (A) 107
- (B) 79
- (C) 13
- (D) 11
- (E) 5

Problema 3. Juan coloca 22 cubos idénticos en la esquina de su casa, así como se muestra en la figura. Algunos de los cubos están en *contacto* con la pared y el piso. Calcula el área total de contacto si la arista de cada cubo mide 2 unidades.



- (A) $40 u^2$
- (B) $48 u^2$
- (C) 84 u^2
- (D) $128 \ u^2$
- (E) $140 u^2$

Problema 4. Determina la suma de los dígitos a y b, si existe un entero positivo x tal que:

$$6 \cdot \left(2x + 5\right)^2 = \overline{7ab}$$

- (A) 11
- (B) 8
- (C) 6
- (D) 5
- (E) 3

Segundo de Secundaria

Problema 5. Pedro con la mitad del dinero que tiene compra un polo y luego le da un sol a su hermano, de lo que le queda, la mitad lo emplea en comprarse un libro y le da un sol a su hermano y por último con la mitad de lo que queda ahora se compra un cuaderno y nuevamente le da un sol a su hermano quedándose al final solo con 3 soles. ¿Cuánto dinero, en soles, tenía al inicio?

(A) 20

(B) 15

(C) 17

(D) 38

(E) 48

Problema 6. Tres amigos: Alex, Braulio y César tienen, cada uno, un balde con agua, cuyas proporciones iniciales de líquido son 9, 6 y 10 respectivamente. Luego ocurre lo siguiente:

- (i) De su balde, Alex pasa x litros de agua al balde de Braulio.
- (ii) César pasa y litros de agua de su balde al balde de Braulio.

Si después de esto, la nueva relación de líquido es de 4, 6 y 5, respectivamente y además x-y=2, ¿cuántos litros de agua le quedaron a César?

(A) 25

(B) 30

(C) 20

(D) 35

(E) 45

Problema 7. Sabiendo que:

 $1119983m85749787143434379954586624 = 2018^{10}$

¿Cuál es el valor de m?

(A) 2

(B) 3

(C) 4

(D) 6

(E) 7

Problema 8. Lorena escribe los números 2016, 2017 y 2018 en ese orden. A partir de esos números Kevin construye una sucesión de modo que cada término después del tercero lo obtiene restando el término anterior a la suma de los dos términos que preceden a ese término. Así, por ejemplo, el cuarto término de la sucesión es 2016 + 2017 - 2018 = 2015. Si Kevin se detiene antes de obtener el primer término negativo, ¿cuántos términos como máximo puede tener dicha sucesión?

(A) 2017

(B) 2018

(C) 2019

(D) 2020

(E) 2021

Problema 9. Usando los dígitos 1, 2, 3, 4, 5, 6, y sin repetirlos, se forman 3 números de 2 cifras cada uno. Se suman entre sí los 3 números de 2 cifras que se formaron. ¿Cuántos resultados diferentes se pueden obtener mediante este procedimiento?

(A) 18

(B) 15

(C) 12

(D) 10

(E) 8

Problema 10. Resuelve la ecuación:

$$\frac{1}{1} \left(\frac{x}{2018} + \frac{1}{2} \right) + \frac{1}{2} \left(\frac{x}{2018} + \frac{2}{3} \right) + \frac{1}{3} \left(\frac{x}{2018} + \frac{3}{4} \right) + \dots + \frac{1}{2018} \left(\frac{x}{2018} + \frac{2018}{2019} \right) = \frac{x}{2019}$$

y determina la suma de dígitos del resultado de $\frac{x^2}{1009}$.

(A) 11

(B) 13

(C) 10

(D) 15

(E) 17

PARTE B: Problemas del 11 al 15.

El puntaje por respuesta correcta es de +6 puntos, respuesta incorrecta -1 puntos y pregunta en blanco 0 puntos.

Problema 11. El barril A contiene 2018 litros de vino y el barril B contiene 2018 litros de agua. Se toman n litros de vino (n es un entero positivo) de A y se vierten en B y luego, después de mezclar con precisión, se toman n de litros del líquido de B y se vierten en A. Encuentra el mínimo valor de n tal que al final, al menos un tercio del líquido de A sea agua.

(A) 1008

(B) 1009

(C) 1010

(D) 672

(E) 671

Problema 12. Sea n=9006000. Encuentra la suma de dígitos del menor entero $d>\sqrt{n}$ tal que d divide a n.

(A) 3

(B) 4

(C) 5

(D) 7

(E) 8

Segundo de Secundaria

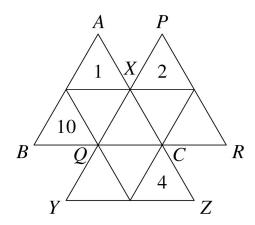
Problema 13. Encuentra el cantidad de pares ordenados (x,y) de enteros positivos tales que:

$$xy + 3 \cdot MCM(x, y) = 2018 + 6 \cdot MCD(x, y)$$

A claración: MCM significa mínimo común múltiplo y MCD significa máximo común divisor.

Problema 14. Llamamos *cadena binaria* de longitud *n* a una secuencia de *n* dígitos formada por 0's y 1's. Por ejemplo 0000, 0101 y 1100 son 3 cadenas binarias de longitud 4. ¿Cuántas cadenas binarias de longitud once existen tales que no contengan más de dos ceros consecutivos en su escritura?

Problema 15. El diagrama muestra tres triángulos ABC, PQR y XYZ, cada uno de los cuales se divide en cuatro triángulos pequeños. En cada uno de los diez triángulos pequeños se debe colocar un entero del 1 al 10 (sin repetir), de modo que la suma de los números en los tres triángulos ABC, PQR y XYZ sea la misma. Los números 1, 2, 4 y 10 ya se han colocado.



¿De cuántas maneras diferentes se puede completar el diagrama?

$$(E)$$
 6